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Chapter 1

Introduction

This book is written with the intent of being a stepping stone in the under-
standing and use of the accelerator modeling class libraries written by Leo
Michelotti, Jim Holt and others. This book will not cover every aspect of
each class structure and and its hierarchy, but will provide a useful starting
point for understanding some of the more mundane uses of the model classes.

First of all, I am not a C++ programming guru. Nor am I a accelerator
physicist. Rather, I am a user (as hopefully you will become) of the modeling
code. These notes are a combination of questions and difficulties I and other
have had when confronted with the seemingly massive amounts code and
include files that comprise the class libraries. With sparse documentation, it
is difficult to know where to start.

The libraries can be broken down into 4 major groupings. The first group-
ing consists of classes that allow the user to build beamlines out of various
classes of beamline elements. The second major grouping of classes consists
of an extensive library of Automatic Differentiation software for performing
calculations of maps and Jets as well as support classes such as Vector, Ma-
trixD, slist, dlist, and so on. The third major grouping of classes provide
pre-compiled models of various accelerators such as the Tevatron in Collider
mode, the Main Injector 8 GeV line and the Recycler. The last grouping
of classes could be called support classes. These classes consist of code for
managing servers, making Sybase queries, and providing an GUI interface
via Tcl/Tk.

The code libraries can be used in various applications. Most of the pro-
grams the user will write will be programs that are run from a terminal in
sort of a "batch mode’ fashion, printing their output to a file or to the screen.



The user can also use the code to make programs that provide a Graphical
User Interface (GUI) where the user can select operations and queries to be
performed on the beamline with the results displayed graphically. It is even
possible to make a client/server application that listens for connections to
a particular port and starts up a particular model based on messages the
server receives on the port.

The user does not have to become proficient in all aspects of the class
libraries to be able to perform basic tasks. The user can modify some of
the skeleton programs in this book to suit their own needs and then add
functionality as the task demands.

In the following chapters, some of the specifics of each group of classes will
be presented along with some of the frequent uses of the classes to perform
common tasks.



Chapter 2

Getting Started

This chapter will describe how to get and compile the libraries that make up
the Accelerator model code written by Leo Michelotti and Jim Holt. I will
assume that the user is on the CARTOON cluster and is fairly proficient in
the Unix operating system.

2.1 Using pre-compiled libraries

The user of the software can use the libraries without really worrying about
the guts of the software or even getting the source code. In the directory
/usr/local/ap/lattice_tools/model/fnal are the include files and the
libraries that the user can include and link to for their own programs. This
alleviates the problem of retrieving and compiling the software in one’s own
directory. At this point the user is ready to start using the libraries to
solve accelerator problems. A sample Makefile to compile a program called
twissCheck utilizing these libraries is below:

# I am overriding the possible external definition
# of $FNALROOT so that the Makefile can stay

# essentially the same as the one used to

# link to locally compiled libraries.

FNALROOT = /usr/local/ap/lattice_tools/model/fnal
SYBASE = /usr/local/ap/sybase



# Define what directories will be searched for
# the include files.
include $FNALROOT/Make-config

INCLUDEDIR = -I$(BEAMLINE_INC) -I$(MXYZPTLK_INC) \
-I$(MACHINE_INC) -I$(FILTER_INC) \
-I$(SYBASE_INC) -I$(TEV_INC) -I$(SWYD_INC) \
-I$(BASIC_TOOLKIT_INC) -I$(PHYSICS_TOOLKIT_INC)

INCLUDE = -I. $(INCLUDEDIR) \
-I/usr/local/TCL-TK/include \
-I$(SYBASE) /include

# Define what directory the libraries should be found in.
MYLIBDIR = -L$(FNALROOT)/1lib/sun

# Define what libraries we will link to.
MYLIBS = -1ltclgui -lsocket++ -lsybase -1filter -1Machine \
-lbeamline -lphysics_toolkit -lbasic_toolkit \

XLIBS = -L/usr/local/ap/X11R6/1ib -L/usr/local/TCL-TK/1lib \
-1tcl -1tk \
-1X11 -1ICE -1SM -lsocket

SYSLIBS = -lcomplex —-1lm —-lsocket

SYBASELIBS = -1lct -1lcs -1lblk -lcomn -lsybtcl -lsybintl

# Define what will get built by default.
all: twissCheck

C = cc
C++ = CC
CFLAGS = -g

C++FLAGS = -g -sb -ptr$(FNALROOT) -ptv
.SUFFIXES: .o .C .c .cc

.C.o:



$(C++) $(C++FLAGS) $(INCLUDE) -c $*.C

.CC.O:
$(C++) $(C++FLAGS) $(INCLUDE) -c $x*.cc

.C.0:
$(CC) $(CFLAGS) $(INCLUDE) -c $x*.c

twissCheck: twissCheck.o
$(C++) $(C++FLAGS) -o twissCheck twissCheck.o\
$ (MYLIBDIR) $(MYLIBS) $(SYSLIBS)

clean:

rm -f *.o0

rm -rf .sb

rm -f *x7%

rm -f twissCheck

depend:
makedepend -- $(DEPEND_INC) -- $(SOURCES)

# DO NOT DELETE THIS LINE -- make depend depends on it.

2.2 Retrieving the source code for code con-
tributions

If the user is planning to contribute to the development of the software by
extending the libraries, then it becomes necessary to get a copy of all of the
software source code. To begin with, the software resides in a CVS (Control
Version Software) repository on the cluster from which users and developers
can checkout the latest copy of the software. The user will retrieve the
software using the cvs command.

To retrieve the software from the cvs repository, you you will need to set
a Unix environment variable to point to where the main cvs repository is.

setenv CVSROOT /home/rooml/CVS



For users of csh or its variants this definition should be entered in their
.login file or put in a file and executed each time before using the software.
The variable, CVSROQOT, defines where cvs can find the repository. The
user can place the software in any subdirectory of their area that they choose.

To retrieve a copy of the software, you need to go to the directory above
where you want to install the software. cvs will make all the necessary
subdirectories. For example, if you wanted to have the software installed in
a directory called 'cvs’ off of you home directory, the user would type:

cd
mkdir cvs
cd cvs

At this point the user can issue the cvs command by typing:
cvs checkout fnal

A copy of the software will be retrieved from the repository and placed
in $HOME/cvs/fnal. The user can monitor the progress of the retrieval from
the screen from which they issued the command.

The use of the software depends on having another Unix environment
variable defined. For users of csh or its variants this definition should be
entered in their .login file or put in a file and executed each time before
using the software. Using the above directory structure, the user would set
the FNALROQT variable as:

setenv FNALROOT $HOME/cvs/fnal

The software makefiles use this environment variable to know where to
construct libraries as well as where to find include files.

Once a copy of the software is retrieved, the user must setup some di-
rectories that will be needed. Fortunately the added directories are created
for the user in the Makefile. By issuing make setup, the user will create
a library directory tree where teh various compiled libraries will go. There
will be subdirectories under $FNALROOT/1ib that correspond to which com-
piler and platform were used for the library build: $FNALROOT/1lib/gcc,
$FNALROOT/1ib/sun, and $FNALROOT/1lib/sgi.

Once the library tree is made, the user is ready to compile the libraries.
By just typing make, the user will get a list of the options that can be used for
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making the libraries. Depending on what platform the user is compiling on
will dictate what options to use. For most users, using make solaris-debug
will suffice. This will compile the libraries using the Solaris C++ compiler with
debugging flags so that the code can be stepped through using the Solaris
debugger. The libraries can also be compiled using the GNU g++ compiler,
although this may not be supported in the future.

It usually takes a couple of hours to compile all of the libraries. Once the
compilation is complete, the user can begin linking their own C++ programs
to the libraries.



Chapter 3

Model Class layout

Presently the source code is broken down into 18 collections of classes. Each
collection contains classes that provide a particular functionality. Below is a
summary of the various collections and their contents.

beamline This contains the classes for constructing and performing various
operations on a beamline. Included in this collection are the classes:
beamline, bmlnElmnt, and Proton.

mxyzptlk This contains the Differential Algebra and Automatic Differen-
tiation classes written primarily by Leo Michelotti. Included in this
collection are the classes: Jet, Map and LieOperator.

basic_toolkit This contains general utility classes such as singly-linked lists
(slist) and doubly-linked lists (d1ist), as well as a Complex, Vector,
and Matrix classes.

physics_toolkit This contains classes that perform a specific type of calcu-
lation. Presently the directory contains classes for calculating the fixed
point for an orbit (FPSolver), as well as a class for the calculation of
Edwards-Teng lattice functions (EdwardsTeng).

machines This directory contains subdirectories relating to model of various
accelerators.

machines/Machine This directory contains the base class structure for the
description of an accelerator machine. It contains a basis set of methods
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one could use in the interrogation and manipulation of a model of a
real accelerator.

machines/tev This collection contains the classes modeling the Tevatron
both in Collider mode as well as in Fixed Target mode.

machines/swyd This collection contains the classes describing the differ-
ent beamlines in the area of Switchyard user the former Accelerator
Division jurisdiction.

machines/recycler This collection contains the classes describing the Re-
cycler accelerator.

machines/mi_8gev This collection contains the classes describing the Main
Injector 8 GeV line.

machines/mi This collection contains the classes describing the Main In-
jector.

machines/mr_8gev This collection contains the classes describing the ob-
solete Main Ring 8 GeV line.

machines/accumulator This collection contains the classes describing the
Anti-proton source Accumulator storage ring.

server This collection contains the basic building blocks used in the con-
struction of client /server applications. It consists of code to monitor a
particular socket and to interpret the messages received there. A child
process will be started at the next available socket to handle requests
of a particular user.

tcl This collection provides a way to implement a Tcl/Tk interface on top
of a C++ application by using a Tc1_Object as a base class.

sybase This collection provides classes for establishing connections to and
retrieving data from Sybase database tables.

socket This collection is the socket++ class library which can be used to
creating communication connections via sockets, pipes, and IP as well
as classes for forking processes.
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filter This is a directory containing various classes and routines that can be
used to affect the reading in or output of beamlines. This directory
contains, for example, routines for converting MAD input decks into
files the class libraries can read.

3.1 Directory layout

To help the user better navigate through the maze of directories, this section
will give you the general layout of the directory structure of the class library
source code.

When the software classes are compiled, they produce libraries which can
be linked into the user’s program. These libraries reside in one of the sub-
directories of the lib directory in the SFNALROOT directory depending on
the platform and compiler used to compile them. There are three subdi-
rectories under the lib directory; lib/gcc, lib/sun and lib/sgi. This lib
directory tree is automatically constructed when issuing a make setup from
the SFNALROOT directory.

Each of the major class structures above contains a directory structure
that contains a src, include, and possibly an app and lattices directory.

The src directory contains the source code for the particular classes that
make up that structure. The include directory contains the class declara-
tions for the classes for that structure. The app directory contains appli-
cation programs that primarily use or test the classes in the src directory,
although they may also require other libraries.

12
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Chapter 4

Model Class Description

This chapter will provide a little more information as to the specifics of some
of the more commonly used classes in each of the directories to help the user
get better acquainted with the class hierarchies.

It will be helpful to the user to note that the units used for all beamline
measurements and particle parameters in the classes are in MKS units.

measurement type units examples
transverse meters

longitudinal meters

angular radians

corrector strength radians

dipole strength Tesla

quadrupole strength | Tesla/Meter

A valuable source of information as to the specific methods available for
a particular class is the header files. The following descriptions of the classes
will not cover the use of every method available, but will touch on some of the
more common ones. Although the documentation in the files can be sparse
at times, most of the method names are self-explanatory.
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Chapter 5

Beamline classes

As mentioned in the introduction, the classes contained in this directory are
used for the construction and manipulation of the beamlines. The basic com-
ponent of a beamline in all accelerators is a beamline element as so it is with
the classes in this directory. There is a base class called bmlnElmnt which
all other classes inherit from that contains basic information about a beam-
line element such as its name, length, strength, alignment and methods to
access and modify this information. All other beamline element-type classes
(hkick, vkick, drift, etc.) inherit from this base class and extend this class
as necessary.

The user can make instances of various bmlnElmnt classes but until they
are tied together, they are just disconnected objects. As in a real machine
where beamline elements are put together to make a beamline, so bmlnElmnts
are put together to make a beamline. A beamline is a class that inherits
from both bmlnElmnt as well as a class not in this directory called dlist
which is a doubly-linked list. The beamline class inherits from bmlnElmnt
because you can construct a complex beamline element using bmlnElmnt
components and group them together into a beamline and add it to another
beamline, treating it as a beamline element.

The beamline class also inherits from dlist because a real machine
beamline is really a ‘list” of beamline elements where for each element, it
is clear what the previous and next elements are. To add elements to a
beamline, it is necessary to make an instance of the object to be added and
then one can use the beamline: :append() method to add the element to
the beamline.

As the beamline is just a dlist of elements, one can access sequential
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elements off of the list by using the dlist_iterator. This class has an
overloaded method dlist_iterator::operator() () that returns a voidx*
pointer to the object on the dlist. In the code example below, the above
overloaded operator is used in the while loop to point to the next element on
the dlist and assign it to a bmlnElmntx*. It is the responsibility of the user to
cast this void * pointer to class type originally put on the dlist. Since all of
the beamline elements inherit from bmlnElmnt, they all have the methods of
this class defined. Casting to this base class allows access to the base methods
for that class which is usually sufficient for most purposes. For instance, the
user can enquire of type of the object using the bmlnElmnt: : Type () method
and based on the "type’ of this beamline element elect to take specific action.
An example would be finding out if the bmlnElmnt presently pointed to was
of type "’hmonitor’ (a horizontal Beam Position Monitor). If so, the user could
then print out the name of the horizontal BPM. The ’type’ information can
also be used to make an ’informed cast” to a more appropriate beamline ele-
ment type. For instance, if the type () method returned a ’sbend’ type, then
the user could cast the base class bmlnElmnt* to the derived class sbend*
and have access to the additional methods that an sbend element has.

As an example, below is a program that constructs individual beamline
elements as well as a beamline and appends the elements to the beamline.
Once the beamline is constructed, a dlist_iterator used used to go down
the beamline and access each element of the beamline and print the name of
the element.

#include "beamline.rsc"
#include <math.h>
#include <string.h>
int main(int argc, char* argv([]) {
double ENERGY = 1000.00;
beamline test;
// define the elements in the beamline using a Tevatron.

drift D1("D1", 6.12 );
drift D2("D2", 6.12 );
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quadrupole TQF("T:QF", 0.762, -1.54420767985797624, 1);
quadrupole TQD("T:QD", 0.762, -0.26895590398428737, 1);

// Actually put the beamline together and set the energy.
test.append(D1);
test.append (TQF) ;
test.append(D2) ;
test.append (TQD) ;

beamlinex flatBeamline = test.flatten();
beamline* lastBeamline (beamline *)flatBeamline->Clone();

lastBeamline->setEnergy (ENERGY) ;

// Now setup to go down the beamline and access each
// element to inquire about its name.
dlist_iterator getNextElement (*(dlist*)lastBeamline) ;
int counter = 1;
while( (element = (bmlnElmnt *)getNextElement())) {

cout << "Element #" << counter << " is a "

<< element->Name() << endl;
counter++;

}

As the pointer to each beamline element is retrieved from the beamline,

the user can access the bmlnElmnt methods to determine what the name or
type of the element and then take appropriate actions. The above example

prints the name of each element retrieved from the beamline.
One of the uses of a beamline is for tracking particles through the beam-

line. To that end, there are a number of classes that inherit from a base class
called Particle. This class allows the user to specify a particle with desired
mass, energy, and charge and then propagate the particle down the beam-
line. Two of the more commonly used inherited classes from the Particle
class are the Proton and the Electron class. These classes could be used
to track a particle down the beamline and read off it’s position at all of the

hmonitors.

#include "beamline.rsc"
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#include <math.h>
#include <string.h>

int main(int argc, char* argv([]) {
double ENERGY = 1000.00;
beamline test;

// define the elements in the beamline using a Tevatron.
drift D1("D1", 6.12 );

hmonitor H1("H1");

drift D2("D2", 6.12 );

hmonitor H2("H2");

quadrupole TQF("T:QF", 0.762, -1.54420767985797624, 1);
hmonitor H3("H3");

quadrupole TQD("T:QD", 0.762, -0.26895590398428737, 1);
hmonitor H4("H4");

// Actually put the beamline together and set the energy.
test.append(D1);
test.append (TQF) ;
test.append(D2) ;
test.append (TQD) ;

test.flatten();
(beamline *)flatBeamline->Clone();

beamline* flatBeamline
beamline*x lastBeamline

lastBeamline->setEnergy (ENERGY) ;

// Use a single Proton for tracking.

Proton p;

// Coordinate order: x y cdt x’ y’ dp/p
double coords[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
p.energy (ENERGY) ;

p.setState(coords) ;

// Setup to go down the beamline looking for any elements
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// that are of the type ‘hmonitor’.
dlist_iterator getNextElement (*(dlist*)lastBeamline);
int counter = 1;
while( (element = (bmlnElmnt *)getNextElement())) {
element->propagate(p) ;
if (!strncmp(element->Type, "hmonitor",strlen("hmonitor")) {
p.getState(coords) ;
cout << "At " << element->Name ()
<< " the coordinates are:\n "
for(int i = 0; i<6; i++){
cout << coords[i] << " ";
}

cout << endl;

In the above code, the six coordinates of the Proton that are retrieved at
each hmonitor are in the following order: z (in meters), y (in meters), cAt
(in meters), =’ (in radians), ¥’ (in radians), %p (unitless).

If the user wanted to use a distribution of particles, there’s a class for
that too. The class is called ParticleBunch class. It inherits from slist and
can make a distribution of particles using whatever distribution function the
user provides, conforming to distribution sigmas and offsets provided by the
user. There is a Gaussian class that can be used in conjunction with the
ParticleBunch class to make a particle bunch with a Gaussian distribution
in all six cooridinates. By modifying the above example, we can use the code
to propagate a ProtonBunch rather than a Proton.

// Use a ProtonBunch for tracking.

ProtonBunch pb;

// Beam sigma order is the same a the coordinate order:
// pd y cdt x’ y’> dp/p
double sigmas[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0%};

// Need a distribution for the particles.

// Let’s use a Gaussian distribution.

Gaussian dist(0);
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pb.recreate(1000,ENERGY,sigmas,&dist) ;

dlist_iterator getNextElement (*(dlist*)lastBeamline);
slist_iterator getNextProton((slist )pb);
int counter = 1;
while( (element = (bmlnElmnt *)getNextElement())) {
element->propagate (pb) ;
if (!strncmp(element->Type, "hmonitor",strlen("hmonitor")) {
Proton* p;
while( p = (Proton *)getNextProton()){
p->getState(coords) ;
cout << "At " << element->Name ()
<< " the coordinates are:\n "
for(int i = 0; i<6; i++){
cout << coords[i] << " ";
}
cout << endl;
}
}
}

Another common action to perform on a beamline is to calculate the
Twiss parameters. Depending on whether the user wants the beamline to
represent a ring or a single-pass beamline will determine what parameters
are passed to the Twiss () method. For a single-pass beamline it is necessary
to pass to the Twiss() method the starting Twiss parameters. Fortunately
there is a struct designed to hold the Twiss parameters called lattFunc
which is defined as follows:

struct lattFunc : public BarnacleData {
double arcLength;
struct {
double hor;
double ver;
} dispersion;
struct {
double hor;
double ver;
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} dPrime;
struct {
double hor;
double ver;
} beta;
struct {
double hor;
double ver;
} alpha;
struct {
double hor;
double ver;
} psi;

lattFunc();
“lattFunc() {}
lattFunc& operator=( const lattFunc& );

};

For a single-pass beamline, this struct should be set to the initial Twiss
parameters at the beginning of the beamline and passed to the Twiss()
method.

For a beamline representing a ring, the Twiss parameters must match
the boundary conditions of being continuous at the ends of the beamline,
therefore it is not necessary to provide initial Twiss parameters.

In either case, the T'wiss method is called and the Twiss parameters are
calculated for each beamline element in the beamline. The Twiss parameters
are not returned to the calling routine, but are ’attached’ to each of the
beamline elements using a class appropriately called a Barnacle class. To
retrieve the Twiss for all or some of the beamline elements in the beamline,
the user would go down the beamline using the dlist_iterator and at
the beamline elements of interest, use one of the beamline: :whatIsLattice
methods to retrieve the attached Twiss parameters.
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Chapter 6

Mxyzptlk classes

This collection of classes contains a package of classes for using Differential
Algebra techniques as well as utility classes. Examples of the classes that fall
into the Differential Algebra category are Jet, Mapping, and CLieOperator.

Leo Michelotti has a very good write-up on the use of the Differential
Algebra classes which the reader is referred to.
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Chapter 7

Machine classes

This collection of classes contains descriptions of the various accelerators
used at Fermilab. Under the machines directory are the individual machine
models along with the base class Machine that they all inherit from.

The basic inheritance structure is as follows:

In this diagram, the myMachine is a hypothetical machine. The Machine
class which itself inherits from the beamline class provides basic methods to
access characteristics of a generic accelerator machine. Taking a look at the
Machine header file below will give the reader an idea of what methods are
available.

class Machine : public beamline {
protected:
double energy; // The energy is common to all classes
// This class should not be constructed
// on its own.
Machine() ;
public:
virtual “Machine();

F S Public Variables —-----—-———-———————————-
// The design is cleaner if these variables are made public

dlist circuitList; // This is a list of circuits for

// all powered elements of the lattice.
int numCircuits; // How many circuits
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Machine

AN

myMachineBase

AN

myMachineCFG myMachine

Figure 7.1: Machine Inheritance tree.

dlist moverList; // This is a list of movers for
// all powered elements of the lattice.
int numMovers; // How many movers

void setAlign(char*,// element name
alignmentData); // alignment data
void set(charx*,// element name
double); // strength value;
virtual void readConfig(char*); // strength table file name
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virtual void readLattice(charx*); // read in lattice from file
virtual void buildCircuits();
virtual void buildMovers();

};

As we can see from the above header file, there are various public data
members that contain information about how many circuits are in the ma-
chine, as a dlist of the circuits in the machine. Each magnet can also be
moved, and hence, there is a d1ist of magnet movers. Both of these lists
can be created by the user using methods provided by the class.

Moving onto the class methods, one can see that the user is given methods
to change the strength or the alignment of an element if the user knows the
name of the element. As promised, there are also methods for building the
lists of circuits and movers.

The hypothetical myMachineBase class is abstract and directly inherits
from the Machine class. Its purpose is to provide some specialization of
the basic Machine class for a particular type of machine. For instance,
the ColliderBase class declared in $FNALROOT /machines/tev/include pro-
vides additional methods specific to the Tevatron Collider model. These in-
clude methods such as ColliderBase: :buildFeeddownCircuits(), ColliderBase: : separatorOn
and
ColliderBase: :pbarFixedPoint ().

Under this class are two other inherited classes called myMachineCFG and
myMachine. The difference in these two classes is the way that the definition
of the physical tunnel elements in beamline or machine are defined. In the
myMachineCFG class, the class constructor includes a C++ file that describes
the beamline in terms of the beamline class library. Therefore, the defintion
of the particular machine is fully defined at library compile time. The defi-
nitions or “.cfg” files are usually located in the particular machines include
directory such as $FNALROOT/machines/tev/include.

For the Tevatron in collider mode, the “.cfg” file defines the basic lattice
of the machine at 1 TeV. To get the changes to the lattice for various low
beta squeeze values, a file is read in to describe that particular low beta
step. For instance, if the user wanted the Collider model representing the
lattice for BD step 1, the user would make a Col1iderCFG model and pass
it the name of a file describing the particular elements changed for BD step
1. This normally consists of the low beta magnets, tune circuits, separators
and feeddowns. These modifications to the lattice are kept in “.dat” files in
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the lattices directory.

The second inherited class from myMachineBase is the myMachine class.
This class provides an ASCII file describing the physical tunnel elements
in the beamline or machine to be specified at runtime. This class passes
the file read in to a stream parser in the beamline class libraries which
then instantiates the various beamline elements as the file is read in. If
the user wishes to edit a particular element, this runtime machine defini-
tion scheme provides an easy way to accomplish this. The files used for
initialization are usually found in hte machines lattice directory such as
$FNALROOT/machines/tev/lattices and have a suffix of “.bml”.

Below will be given an example of each type of accelerator machine in-
stantiation so that the user can get a feel for how to use these pre-defined
accelerator models. The first is a modification of the twissCheck.cc appli-
cation in the Tevatron 'app’ doirectory. This uses the “CFG” format file for
hte beamline initialization.

#include <math.h>
#include <string.h>
#include <iomanip.h>
#include "beamline.rsc"
#include "ColliderCFG.h"

int main( int argc, charx*x argv ) {

// Create the Jet enviroonment
Jet::BeginEnvironment( 1 );

coord x(0.0), y(0.0), =z(0.0),

px(0.0), py(0.0), pz(0.0);

Jet__environment* pje = Jet::EndEnvironment() ;
JetC::lastEnv = JetC::CreateEnvFrom( pje );
JetC__environment* pjeC = JetC::lastEnv;

// Construct the model ring
int 1i;

ColliderCFG* tev;

// Read in the changes from Collider at 1 TeV vs. the
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// Collider at BD step 1.
tev = new ColliderCFG("../lattices/h1000s1.dat");
tev->setEnergy (1000.00044018) ;

lattFunc W;

lattRing initR;

double energy = tev->Energy();

JetProton p(energy);

// Calculate the Twiss parameters treating the Collider
// as a ring.

int result = tev->twiss(p);

// Retrieve the Tunes.
initR = tev->whatIsRing();
cout << "Tunes = " << initR << endl;

// Now got through the machine and print out the
// Twiss parameters at every beamline element.
i=20;
bmlnElmnt* element;
dlist_iterator getNext(*(dlist*)tev);
while( (element = (bmlnElmnt *)getNext())) {

W = tev->whatIsLattice(i);

it++;

cout << element->Name() << " " << W.arcLength << " "
<< W.alpha.hor << " " << W.beta.hor << " "
<< W.psi.hor/M_PI/2.0 << " " << W.alpha.ver << " "
<< W.beta.ver << " " << W.psi.ver/M_PI/2.0
<< endl;

The second example is the same as the above example, but the beamline
initialization will be done using a “.bml” file.

#include <math.h>
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#include <string.h>
#include <iomanip.h>
#include "beamline.rsc"
#include "Collider.h"

int main( int argc, char*x argv ) {

// Create the Jet enviroonment
Jet::BeginEnvironment( 1 );

coord x(0.0), y(0.0), z(0.0),

px(0.0), py(0.0), pz(0.0);

Jet__environment* pje = Jet::EndEnvironment() ;
JetC::lastEnv = JetC::CreateEnvFrom( pje );
JetC__environment* pjeC = JetC::lastEnv;

// Construct the model ring
int 1i;
Colliderx* tev;

// Read in the particular lattice (e.g. helix step 1)
tev = new Collider("../lattices/h1000s1.bml");
tev->setEnergy (1000.00044018) ;

lattFunc W;

lattRing initR;

double energy = tev->Energy();

JetProton p(energy) ;

// Calculate the Twiss parameters treating the Collider
// as a ring.

int result = tev->twiss(p);

// Retrieve the Tunes.
initR = tev->whatIsRing();
cout << "Tunes = " << initR << endl;

// Now got through the machine and print out the
// Twiss parameters at every beamline element.

i=0;
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bmlnElmnt* element;

dlist_iterator getNext(x(dlist*)tev);

while( (element = (bmlnElmnt *)getNext())) {
W = tev->whatIsLattice(i);

i++;

cout << element->Name () << " " << W.arcLength << " "
<< W.alpha.hor <" " <KL W.beta.hor << " "
<< W.psi.hor/M_PI/2.0 << " " << W.alpha.ver << " "
<< W.beta.ver << " " << W.psi.ver/M_PI/2.0
<< endl;

7.1 Tevatron classes

The machines/tev directory contains classes that are specific to the two
modes that the Tevatron machine can run in: Collider and Fixed Target.
For Collider mode, there are the Collider family of classes. The Collider
models are set for the design energy of 1 TeV momentum.

For Fixed Target mode, there are the TevExtract family of classes. These
classes can combined with the classes in the machines/swyd directory to
make a Tevatron that can extract to one or many beamlines. The Fixed
Target model is setup to model the Tevatron at 800 GeV during fast spill (as
opposed to slow spill).

The directory also contains support classes for Luminosity and RF bucket
cogging calculations.

7.2 Switchyard classes

The machines/swyd directory contains classes that describe the various beam-
lines that are run in Fixed Target mode as of 6/97. This includes the Proton,
Meson, Neutrino and Muon beamlines. These beamlines can be attached to
the fixed Target model of the Tevatron (TevExtract). These beamlines con-
tain electrostatic septa and three-way lambertson magnets. The electrostatic
septa are modeled as a zero-length kick element with drift elements making

30



up the length of the septa magnet. The lambertsons are modeled by having
a zero-length thinLamb beamline element that defines the locations of the
septa. As a particle bunch intercepts this element, the element sorts the par-
ticles based on whether the particles are transversely higher or lower than
the septa, removing particles from the parent bunch and placing them in a
new particle bunch.. The thinLamb beamline element has attached to it a
new beamline representing the extraction beamline. The particles that pass
below the septa continue to the next beamline element in the beamline. The
particles that pass above the magnet septa are passed to a new beamline and
a new propagation is begun.

7.3 Recycler classes

The machines/recycler directory coontains classes that describe the Re-
cycler storage ring. The two classes of interest are the Recycler and the
RecyclerCFG class - with the differences being explained previously.

7.4 Main Injector 8 Gev Line classes

The machines/mi 8gev directory contains the classes describing the Main
Injector 8 GeV line that goes from Long-3 in Booster to the Main Injector
accelerator. This directory contains the two classes MI_8gev and MI_8gevCFG.
Since the ".cfg’ file is generated from a MAD input deck, the names in the
".cfg’ file are not necessarily very descriptive names. The *.bml’ file (to be used
with the MI_8gev class contains ACNET names for the powered beamline el-
ements as well as the latest values for magnet strengths as well as SWICS
(Segmented Wire Ionization Chamber) represented by mwireMonitor beam-
line elements.

7.5 Main Injector classes

The machines/mi directory contains th classes that describe the Main Injec-
tor at 8 GeV.
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Chapter 8

Basic toolkit classes

This library contains many general purpose classes that can be used in a wide
variety of applications beyond Accelerator modeling. These classes include
dlist, VectorD, Matrix, and IntArray. Examples of some of these classes
will be given below.

The dlist class provides a doubly-linked list class that can be used to
store, add and delete any number of like-objects. A dlist works like a
variable size array of like-objects. They are useful if you do not know how
many objects you are going to have to store beforehand.

The example below uses a simple struct of a name and an age as the
‘form’ of the type of objects to be stored.

#include "dlist.h"
#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#include <iomanip.h>

//***********************************************************

//
// This is a test program the uses dlists. It reads in 5
// names and then stores them on the list for later retrieval.

//

//***********************************************************
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struct dlist_entry_type {
charx* name;
int age,

};
int main(void){
dlist NameList; // This defines the dlist object.

cout << "This program will prompt the user for 5 names "
<< "and ages. The\nnames will be put on a dlist "
<< "and read back to the user." << endl;

char tmpBuffer[80]; // Temporary storage for the
// user input.
dlist_entry_type* newData; // This is what will appear
// on the list.
for(int i = 0; i<5; i++){
newData = new dlist_entry_type; // Allocate the struct.
cout << "enter name:";
cin.getline(tmpBuffer,80,’\n’);

// Now that we have the name, make room for it in

// the struct.

newData->name = new char[strlen(tmpBuffer)+1];
strcpy(newData->name, tmpBuffer); // Copy name to struct.
cout << "enter age:";

cin.getline(tmpBuffer,80,’\n’);

newData->age = atoi(tmpBuffer); // Convert age to integer.

// Now that we have the struct filled out with the
// name and age, put it on the list.
NameList.append (newData) ;

cout << "The next name/age combination will be inserted "
<< "between the second and third entries made above"
<< endl;
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name between the second and third object on the dlist.

newData = new dlist_entry_type; // Allocate the struct.
cout << "enter name:";
cin.getline(tmpBuffer,80,’\n’);

// Now that we have the name, make room for it in the struct.
newData->name = new char[strlen(tmpBuffer)+1];
strcpy(newData->name,tmpBuffer); // Copy name to struct.
cout << "enter age:";

cin.getline(tmpBuffer,80,’\n’);

newData->age = atoi(tmpBuffer); // Convert name to integer.

// Now that we have the struct filled out with the name
// and age, put it on the list.
NameList.putBelow(NameList [3], newData);

cout << "\n\nNow that the names have been read in, they "
<< "will be output one at a time. " << endl;

dlist_iterator getNext (NameList); // This is used to
// go down the list.
dlist_entry_typex tmpData;

// Pull an element off the list and type-cast it to the
// correct type of pointer.
while(tmpData = (dlist_entry_type *)getNext()) {
cout << "Name: " << tmpData->name
<< " age: " << tmpData->age << endl;

The code places 5 names and ages on the dlist and then inserts a sixth
Finally, a dlist-

iterator is used to go down the dlist and retrieve the pointers to every object
on the list, in this case displaying the data members of the structure.

It is important to note that the dlist is just a collection of objects and

that it provides no method for retrieving the elements off the list. This is
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left to another class called a dlist_iterator. This design allows multiple
accesses to be made by dlist_iteratorsto the same dlist and the same time
as would be done if the elements on the d1ist were being sorted. Also note
that the dlist is really just a list of memory addresses and as such, when
they are retrieved off of the dlist, they must be cast to the same type or a
base class type that they represent. There are other types of iterators that
can be used for dlists that specific characteristics for specific applications.

There is also a slist or singly-linked class as well which works pretty
much the same as the dlist with the following exception: in a dlist, you
have access to the elements on the dlist both above and below the present
element. In an slist, you have access only to the element below the present
element. so for example, if you have the address of the last element on a
dlist, you can travel back up the list to the top whereas for an slist you
can not.

Another useful class is the MatrixD class. There are variants of this class
based on the type of elements in each ‘cell” being, integer, double or complex.
In the following discussion, the MatrixD class will be discussed. The major
advantage of the use of the MatrixD class is that the computations normally
done with matrices can be written down in a compact easy-to-read form
rather than the more obscure nested ‘for’ loop format.

The Vector class is another useful class for general mathematical calcu-
lation. The Vector can be constructed with any number of elements, but
default constructor will result in a three element zero Vector. The example
below is one from Leo Michelotti that demonstrates some of the uses of the
Vector class.

VectTest.cc

*

*

* Demonstration.

* Leo Michelotti March 22, 1995
*

#include "Vector.h"

main()
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Vector a(4), b(4), c(4);

for( int i = 0; i < 4; i++ ) {
a(i) = 1i;
b(i) 2.0%7;

}

if( a.IsNull() ) cout << "Wrong a\n";
else cout << "Right a\n";

if( b.IsUnit() ) cout << "Wrong b\n";
else cout << "Right b\n";

c = 3.0%a + b;

cout << "a =" << a << endl;
cout << "b =" << b << endl;
cout << "¢ =" << ¢ << endl;

cout << ( 4.0%c - a + b ) << endl;
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Chapter 9

Physics toolkit classes

This collection of classes provide general accelerator modeling classes that
are not limited to one particular accelerator model. Presently, the two
classes provided are the EdwardsTeng class for calculating beamline param-
eters (similar to Twiss) for a coupled lattice and the FPSolver class for
calculating the orbital fixedpoint for a ring-like accelerator.
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Chapter 10

Server classes

The server collection of classes comprise the foundation for server-side of the
client /server online model and Open Access Server both which are accessi-
ble through the Accelerator controls system console applications pages. The
Online Models are applications that reside on a single PA. The user can start
the particular application and modify a model of the accelerator. This in-
cludes in many instances, reading real accelerator parameters and comparing
them to the results of the model. This has the benefit of allowing the user
to modify characteristics for the accelerator that may not correspond to an
ACNET device (alignment of beamline elements, for instance).

The Open Access Model provides via a re-direction service the ability to
have any console application retrieve data from a model of the accelerator.
In this way, the application does not know it is re-directed and retrieves data
not from the real accelerator front-end but from the Open Access Model.
This provides a testing bed for applications written before accelerators have
been commissioned. Once an accelerator is running, it allows comparision of
model-generated data to be compared to real accelerator ACNET data.

The directory contains code for the base class serveBase that all the
other model servers inherit from. The rest of the classes are inherited classes
for specific machines. Presently, the modeled machines include Online Mod-
els for the Main Injector 8 GeV line, the Main Injector, the Recycler, the
Collider, and the Tevatron and Switchyard in Fixed Target mode. For the
Open Access Server, there exist BL8erve (the prototype OAM for the Main
Ring 8 GeV line, now obsolete) and the Main Injector.
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10.1 Anatomy of the Client /Server software

This section will attempt to summarize the client /server application environ-
ment used for the Online Model and to some extent the Open Access Client.
There will be a description of the database table structure and usage as well
as a description of the client/server handshaking process used for passing
messages.

The server software is developed to make use of C++ accelerator model-
ing code developed primarily by Leo Michelotti and Jim Holt, the publicly
available socket++ socket library and an in-house wrapper class on the Sybase
Open Client libraries. Together, these make available various models of ac-
celerators. The primary client-side software has been developed with the
ACNET controls system in mind, but there is nothing inherent in the server
side that would disallow another type of GUI application to communicate
with the server. The only requirement would be that the GUI application
would need access to the model database server.

The communication with the server is done through TCP/IP sockets
through which ASCII messages are passed back and forth. Most of the mes-
sages are used as requests for calculations. Both the clients and the server
have access to a database server which acts as an intermediary for the ex-
change of the actual calculation results. This database solution was found
to be much faster than trying to stuff large structures of data through a
TCP/IP socket. A diagram of this communcation scheme is shown in Figure
10.1.

To better visualize the interplay between the user, the masterServer and
the accelerator model, a timeline of the model startup is given in Table 10.1.

At this point, the accelerator-specific model is now a separate process
communicating with the user and satisfying requests.

There exists in the model database, tables representing twiss data, orbit
data, lists of elements and circuits for each of the lattices of the various
models. These tables are constructed from design parameters whenever the
design model changes — which is typically not very often. These tables are
used as the starting point for the model so that massive calculations of various
accelerator parameters do not have to be performed at startup. When the
machine-specific model is started, a copy of 'view’ of the lattice tables is
made for the user. In this way, the user is insulated from changes that other
users could be making to another model of the same accelerator. This copy is
maintained as long as the user needs the tables. Once the communication is
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user

masterServer

accelerator-specific
model

masterServer listening
to port 3000

non-existent

Model startup request.

Parses message to de-
termine which model is
requested and forks a
process to start that
particular model.

Figures out  what
database slot is open
and uses that as an
offset from port 3000
for it’s communication.
It informs masterServer
of its port.

Passes model port num-
ber on to user.

User specifies to model
what lattice to use from
initialization.

Model initializes with
user-specified  lattice.
This entails copying
database lattice tables
into a particular view
for the user, so that in
essence the user has his
own model.

Table 10.1: Model timeline for startup.
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Accelerator model

Model database server

Y

VMS

Console Applications
(viaUL_MODEL)

Figure 10.1: Client/Server/Database communication.

broken, the tables are truncated and the database slot is freed up for another
user.

As long as there are no changes to the strengths of the model beamline
elements, these tables represent the accelerator parameters for the particular
lattice. Omnce a change is made to a magnetic element in the model, the
‘true’ accelerator parameters and those in the database tables are out of
sync. When the user asks for Twiss parameters, after making a change, the
model re-calculates new Twiss parameters and bulk copies them into the
user’s database view. Updates to the tables are not done unless the user a)
changes a magnetic element in the model and b) requests accelerator data
from the database tables. In this way, the model only refreshes data that the
user is really interested in.

If the user changes one of the model beamline element strengths, then the
values of the tables are marked as stale, and further requests for accelerator
parameters will force a new calculation of those particular parameters re-
quested. This means that if a quadrupole strength is changed, and then the
user requests new Twiss parameters, the model will calculate new Twiss pa-
rameters, and copy those new values to the Twiss database table. Note that
in this scenario, the orbit data, as an example, has not been re-calculated
and as this scenario stands does not reflect the present state of the model.
If the user were to ask for Orbit data now, the model would calculate new
orbit data and copy it into the orbit database table.
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Chapter 11

Tcl classes

The Tcl collection of classes provide the user with the means to make a
program with a Graphical User Interface (GUI). The language Tcl/Tk is
useful for making graphical interfaces with little work and the learning curve
is not very steep.

The base class for this collection of classes, is the Tc1 Object class. This
class can be used as the base class in a user application with the user providing
methods to be invoked in response to pushbuttons or entry in data fields.

Below is part of the code for a very simple Rolodex based on using the
Tcl0Object class. This example can be thought of as the GUI version of the
dlist example on page 32

#ifndef TCLLIST_H
#define TCLLIST_H
#include "dlist.h"
#include "Tcl_Object.h"

struct dlist_entry_type {
char* name;
int  age;

};

class rolodex : public Tcl_Object {
private:
dlist* NamelList;
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charx tclFileName;

protected:

void fileName_to_tcl(charx) ;
char* get_filename();

void exechook();
public:

rolodex();

“rolodex();

// member functions callable from the tcl/tk script.
void save_entry();

};

#endif // TCLLIST_H

Here is the implementation code for the above class.

#include "tclList.h"
#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#include <iomanip.h>

//*******************************************************

//

// This is a test program the uses dlists. It reads in
// names and ages and then stores them on the list for
// later retrieval.

//

//*******************************************************

extern Tcl_CmdProc c_save_entry;

rolodex: :rolodex() {
init_interpQ);
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NamelList = new dlist;

CreateCommand ("c_save_entry", c_save_entry);

}

rolodex: :~rolodex() {

}

void rolodex: :exechook(){
[/ 33k sk ok ok stk ok ok ok sk ok sk ok ok sk sk ok ok sk ok ok sk ok ok skok ok o e skok ok ok ok

//

// method to initialize other interpreters.

//

//********************************************

I

3

char *rolodex::get_filename(){
[ [ KK KA KA AR KA KK KK KKK K KKK KKK KKK KKK KKK

//
// method to recall the tcl script to feed to wish
//

//********************************************

return("./myRolodex.tcl");
}

void rolodex::fileName_to_tcl(char* name) {
[ ] sk ok sk ok sk ok sk ok sk sk sk sk o sk ok sk sk sk sk sk ok sk sk ok sk sk ok sk ok s sk sk ok ok ok

//
// method for converting filenames to somethign tcl
// understands.

//

[/ 3k sk sk ok ok sk ok ok ok sk ok sk ok sk sk ok sk ok ok sk ok ok sk sk ok skok ok sk e skok ok ok ok
Tcl_SetStrVar("fileName", name) ;

void rolodex::save_entry() {
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//********************************************

//

// method for saving an entry made onto the dlist.

//

[/ 33k sk sk ok ok sk ok o ok sk ok sk ok sk sk ok sk ok ok sk ok ok sk sk ok skok ok ok e skok ok ok ok
int NewAge; // Not THE new age, it’s just a
// variable name.

// Retrieve the new name and age to be put on the
// list. All the Tcl_ methods are from Tcl_0Object.

char* NewName = Tcl_GetStrVar("name"); // NO NULL_TERMINATOR!
NewAge = Tcl_GetIntVar("age");

// Put the new name/age on the dlist.
dlist_entry_type* NewEntry;

NewEntry = new dlist_entry_type;
NewEntry->name = new char[strlen(NewName)+1];

strncpy (NewEntry->name,NewName, strlen(NewName)) ;
// We must NULL-terminate the string.
NewEntry->name [strlen(NewName)] = ’\0’;
NewEntry->age = NewAge;
NameList->append(NewEntry) ;

// Just for grins, lets print out what’s in the
// dlist at this point.

dlist_iterator getNext (*NameList) ;
dlist_entry_typex tmpData;

// Pull an element off the list and type-cast.
while(tmpData = (dlist_entry_type *)getNext()) {
cout << "Name: " << tmpData->name << " age: "
<< tmpData->age << endl;

}

return;

45



// These macro calls actually define the plain-C embedding:

// CAUTION: whitespace between parentheses can cause errors!
// These are where the connection is made to procedure calls
// in Tcl/Tk and the associated method in C++.

_CMD_Embedding(rolodex,c_save_entry,save_entry) ;

Now the above example has just a GUI on a basic type of program. If the
user wants to put a GUI on a program to model an accelerator, then there
is another class called modelGUI that provides a base class that the user can
build upon. This approach is what is used by Jim Holt and Andrew Braun
or their interactive model of the Final Focus Test Beam line at SLAC.
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Chapter 12

Sybase classes

The classes contained in the Sybase directory encapsulate many of the com-
mon actions that the model has with the database. The SybaseCom class is
basically a C++ wrapper on the Sybase client libraries. It provides atomic
methods to perform querys and table insertions.

The LatticeDB class is designed for loading the model database with the
lattice tables, which are the starting point for the Online Models. This class
is usually used when a new lattice is being put into the database.

The ModelDB class provides communication between the model database
tables and the model itself. In fact, the server classes in the server directory
contain a pointer to a ModelDB object.

The S1otDB class is a small utility class that goes though the different
views and looks for an open slot. It then reports back this slot number. This
class is used during Online Model startup.
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Chapter 13

Socket classes

The socket classes are those developed by Gnanasekaran Swaminathan and
available in his socket++ package. These classes allow socket communication
of various modes with little programming on the user’s part. The reader is
directed to his documentation for an excellent description of the features and
abilities of this class library.
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Chapter 14

Filter classes

The filter classes contain various useful classes and routines to perform ma-
nipulations on beamlines and such. There are also Perl scripts that can be
used to generate beamline files in “.cfg” format from MAD.

The concatDrifts routine allows the user to pass a beamline into the
concatDrifts method and have returned a beamline with all of the multiple
drifts concatenated into one. This can be used to speed up tracking by
reducing the total numbe rof elements to track through.

The beamlineStreams class provides a way to read and write a beamline
to a file in “.bml” format.

The writeMAD routine provides a way to output a beamline in MAD
format.

The scaleBeamline routine provides a way to scale the strength of beam-
line elements by a factor.

The setBunches, ForwardBucket and ReverseBucket classes provide
ways to manipulate the distribution of particles in RF buckets. These classes
can be used in modeling of various cogging scenarios.
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